login
A074047
a(n)=a(n-1)*a(n-2)*a(n-3)*(1/a(n-1)+1/a(n-2)+1/a(n-3)) starting with a(1)=a(2)=a(3)=1.
2
1, 1, 1, 3, 7, 31, 331, 12795, 4642051, 60935796571, 283646808320375611, 17285560913056915909539455163, 4902995236325455290013100337511909917402705547
OFFSET
1,4
COMMENTS
Using the simplified formula which extends the original one to terms that may be zero, one could prefix the values (1, 1, 0), cf. A121810. See also A203761 and references therein. - M. F. Hasler, Jan 01 2013
FORMULA
a(n) tends towards a(n-1)^phi and 1.22376...^(phi^n) where phi=(1+sqrt(5))/2=1.6180339887...
a(n)=a(n-1)*a(n-2)+a(n-3)*a(n-1)+a(n-2)*a(n-3). - M. F. Hasler, Jan 01 2013
EXAMPLE
a(7)=31*7*3*(1/31+1/7+1/3)=331.
MATHEMATICA
RecurrenceTable[{a[n]==a[n-1]*a[n-2]+a[n-3]*a[n-1]+a[n-2]*a[n-3], a[1]==1, a[2]==1, a[3]==1}, a[n], {n, 1, 15}] (* Vaclav Kotesovec, Jan 20 2014 *)
CROSSREFS
Cf. A074046.
Sequence in context: A063896 A277028 A156895 * A121810 A081475 A123212
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 14 2002
STATUS
approved