login
A014631
Numbers in order in which they appear in Pascal's triangle.
8
1, 2, 3, 4, 6, 5, 10, 15, 20, 7, 21, 35, 8, 28, 56, 70, 9, 36, 84, 126, 45, 120, 210, 252, 11, 55, 165, 330, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 14, 91, 364, 1001, 2002, 3003, 3432, 105, 455, 1365, 5005, 6435, 16, 560, 1820, 4368, 8008, 11440
OFFSET
1,2
COMMENTS
A permutation of the natural numbers. - Robert G. Wilson v, Jun 12 2014
In Pascal's triangle a(n) occurs the first time in row A265912(n). - Reinhard Zumkeller, Dec 18 2015
MATHEMATICA
lst = {1}; t = Flatten[Table[Binomial[n, m], {n, 16}, {m, Floor[n/2]}]]; Do[ If[ !MemberQ[lst, t[[n]]], AppendTo[lst, t[[n]] ]], {n, Length@t}]; lst (* Robert G. Wilson v *)
DeleteDuplicates[Flatten[Table[Binomial[n, m], {n, 20}, {m, 0, Floor[n/2]}]]] (* Harvey P. Dale, Apr 08 2013 *)
PROG
(Haskell)
import Data.List (nub)
a014631 n = a014631_list !! (n-1)
a014631_list = 1 : (nub $ concatMap tail a034868_tabf)
-- Reinhard Zumkeller, Dec 19 2015
(Python)
from itertools import count, islice
def A014631_gen(): # generator of terms
s, c =(1, ), set()
for i in count(0):
for d in s:
if d not in c:
yield d
c.add(d)
s=(1, )+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1, ) if i&1 else ())
A014631_list = list(islice(A014631_gen(), 30)) # Chai Wah Wu, Oct 17 2023
CROSSREFS
Cf. A034868, A119629 (inverse), A265912.
Sequence in context: A183079 A374797 A119629 * A263266 A263268 A257472
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
Offset changed by Reinhard Zumkeller, Dec 18 2015
STATUS
approved