login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014631
Numbers in order in which they appear in Pascal's triangle.
8
1, 2, 3, 4, 6, 5, 10, 15, 20, 7, 21, 35, 8, 28, 56, 70, 9, 36, 84, 126, 45, 120, 210, 252, 11, 55, 165, 330, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 14, 91, 364, 1001, 2002, 3003, 3432, 105, 455, 1365, 5005, 6435, 16, 560, 1820, 4368, 8008, 11440
OFFSET
1,2
COMMENTS
A permutation of the natural numbers. - Robert G. Wilson v, Jun 12 2014
In Pascal's triangle a(n) occurs the first time in row A265912(n). - Reinhard Zumkeller, Dec 18 2015
MATHEMATICA
lst = {1}; t = Flatten[Table[Binomial[n, m], {n, 16}, {m, Floor[n/2]}]]; Do[ If[ !MemberQ[lst, t[[n]]], AppendTo[lst, t[[n]] ]], {n, Length@t}]; lst (* Robert G. Wilson v *)
DeleteDuplicates[Flatten[Table[Binomial[n, m], {n, 20}, {m, 0, Floor[n/2]}]]] (* Harvey P. Dale, Apr 08 2013 *)
PROG
(Haskell)
import Data.List (nub)
a014631 n = a014631_list !! (n-1)
a014631_list = 1 : (nub $ concatMap tail a034868_tabf)
-- Reinhard Zumkeller, Dec 19 2015
(Python)
from itertools import count, islice
def A014631_gen(): # generator of terms
s, c =(1, ), set()
for i in count(0):
for d in s:
if d not in c:
yield d
c.add(d)
s=(1, )+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1, ) if i&1 else ())
A014631_list = list(islice(A014631_gen(), 30)) # Chai Wah Wu, Oct 17 2023
CROSSREFS
Cf. A034868, A119629 (inverse), A265912.
Sequence in context: A183079 A374797 A119629 * A263266 A263268 A257472
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
Offset changed by Reinhard Zumkeller, Dec 18 2015
STATUS
approved