|
|
A014628
|
|
Number of segments (and sides) created by diagonals of an n-gon in general position.
|
|
1
|
|
|
3, 8, 20, 45, 91, 168, 288, 465, 715, 1056, 1508, 2093, 2835, 3760, 4896, 6273, 7923, 9880, 12180, 14861, 17963, 21528, 25600, 30225, 35451, 41328, 47908, 55245, 63395, 72416, 82368, 93313, 105315, 118440, 132756, 148333, 165243, 183560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,1
|
|
COMMENTS
|
There is a connection to A014626: number of intersection points of diagonals of n-gon, plus number of vertices, b(n) = n*(n+1)*(n^2-7*n+18)/24 and A006522: number of regions created by sides and diagonals of n-gon, c(n) = (n-1)*(n-2)*(n^2-3*n+12)/24. These are related by the Euler-formula: b(n) + c(n) - a(n) = 1. - Georg Wengler, Mar 31 2005
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n^4-6*n^3+17*n^2-24*n)/12 + n; or equally n*(n-1)*(n^2-5*n+12)/12.
G.f.: x^3*(3-7*x+10*x^2-5*x^3+x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
|
|
MATHEMATICA
|
Table[Binomial[n, 2]+2Binomial[n, 4], {n, 3, 50}] (* Harvey P. Dale, Oct 03 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
G.f. proposed by Maksym Voznyy, checked and corrected by R. J. Mathar, Sep 16 2009
|
|
STATUS
|
approved
|
|
|
|