|
|
A182461
|
|
a(n) = 3*a(n-1) - 2*a(n-2) with a(0)=16 and a(1)=40.
|
|
6
|
|
|
16, 40, 88, 184, 376, 760, 1528, 3064, 6136, 12280, 24568, 49144, 98296, 196600, 393208, 786424, 1572856, 3145720, 6291448, 12582904, 25165816, 50331640, 100663288, 201326584, 402653176, 805306360, 1610612728, 3221225464, 6442450936, 12884901880
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Number of vertices into building blocks of 3d objects with 4 vertices.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = a(n-1)*2 + 8.
G.f.: 16 + 40*x + 88*x^2 + 184*x^3 + 376*x^4 + 760*x^5 + 1528*x^6 + ...
a(n) = 8 * A055010(n+1). [Joerg Arndt, Jun 01 2014]
G.f.: -((8*(x - 2))/(2*x^2 - 3*x + 1)). - Vincenzo Librandi, Jun 02 2014
|
|
EXAMPLE
|
a(0) = 4+8+4;
a(1) = 4+8+16+8+4;
a(2) = 4+8+16+32+16+8+4;
a(3) = 4+8+16+32+64+32+16+8+4.
|
|
MATHEMATICA
|
CoefficientList[Series[-((8 (x - 2))/(2 x^2 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 02 2014 *)
|
|
CROSSREFS
|
Cf. A000045, A028399, A038578, A089143, A173033, A182462, A182464, A182465, A182466, A182467.
Sequence in context: A086046 A184030 A350284 * A205065 A185790 A185761
Adjacent sequences: A182458 A182459 A182460 * A182462 A182463 A182464
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Odimar Fabeny, Apr 30 2012
|
|
STATUS
|
approved
|
|
|
|