login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086046
Sum of first n 4-almost primes.
5
16, 40, 76, 116, 170, 226, 286, 367, 451, 539, 629, 729, 833, 959, 1091, 1226, 1362, 1502, 1652, 1804, 1960, 2144, 2333, 2529, 2727, 2931, 3141, 3361, 3586, 3814, 4046, 4280, 4528, 4778, 5038, 5314, 5608, 5904, 6201, 6507, 6815, 7130, 7458, 7788, 8128
OFFSET
1,1
COMMENTS
Elements in this sequence can themselves be 4-almost primes. a(1) = 16 = 2^4. a(2) = 40 = 2^3 * 5. a(19) = 1652 = 2^2 * 7 * 59. a(20) = 1804 = 2^2 * 11 * 41. a(31) = 4046 = 2 * 7 * 17^2. a(37) = 5608 = 2^3 * 701. a(39) = 6201 = 3^2 * 13 * 53. a(40) = 6507 = 3^3 * 241. a(42) = 7130 = 2 * 5 * 23 * 31. a(43) = 7458 = 2 * 3 * 11 * 113. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004
LINKS
FORMULA
a(n) = sum_{i=1..n} A014613(i). - R. J. Mathar, Sep 14 2012
EXAMPLE
a(2)=40 because sum of first two 4-almost primes i.e. 16+24 is 40.
MATHEMATICA
Accumulate[Select[Range[1000], PrimeOmega[#]==4&]] (* Harvey P. Dale, Feb 07 2014 *)
CROSSREFS
Sequence in context: A177723 A174321 A258258 * A184030 A350284 A182461
KEYWORD
easy,nonn
AUTHOR
Shyam Sunder Gupta, Aug 24 2003
STATUS
approved