OFFSET
1,1
COMMENTS
Since there are an infinite number of semiprimes, there may be an infinite number of such numbers k. k=16 appears to be the only solution where the prime is 2.
EXAMPLE
k=16 is a term: 16 = 2^3 * 2, 15 = 3*5, and 14 = 2*7.
MATHEMATICA
q[n_] := ! PrimeQ[n] && Plus @@ Mod[FactorInteger[n][[;; , 2]], 3] == 1 && PrimeOmega[{n - 2, n - 1}] == {2, 2}; Select[Range[32000], q] (* Amiram Eldar, Dec 28 2021 *)
PROG
(PARI) isok(n)=my(s=factor(n)[, 2]~); select(e->e<>0, s%3)==[1] && s<>[1] && bigomega(n-1)==2 && bigomega(n-2)==2 \\ Andrew Howroyd, Dec 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Sheldon Collier, Dec 23 2021
STATUS
approved