|
|
A350284
|
|
Numbers k which are the product of a cube greater than 1 and a prime, and where k-1 and k-2 are semiprimes.
|
|
0
|
|
|
16, 40, 88, 135, 328, 448, 1048, 1384, 1715, 1984, 2104, 2560, 2943, 3064, 3904, 4288, 5184, 5319, 6507, 6939, 7000, 7263, 7864, 8728, 9099, 9288, 9664, 11043, 11367, 12288, 15579, 17496, 17944, 18808, 22599, 23488, 24875, 25083, 25407, 26008, 26584, 30184, 30904, 31288, 31944
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Since there are an infinite number of semiprimes, there may be an infinite number of such numbers k. k=16 appears to be the only solution where the prime is 2.
|
|
LINKS
|
Table of n, a(n) for n=1..45.
|
|
EXAMPLE
|
k=16 is a term: 16 = 2^3 * 2, 15 = 3*5, and 14 = 2*7.
|
|
MATHEMATICA
|
q[n_] := ! PrimeQ[n] && Plus @@ Mod[FactorInteger[n][[;; , 2]], 3] == 1 && PrimeOmega[{n - 2, n - 1}] == {2, 2}; Select[Range[32000], q] (* Amiram Eldar, Dec 28 2021 *)
|
|
PROG
|
(PARI) isok(n)=my(s=factor(n)[, 2]~); select(e->e<>0, s%3)==[1] && s<>[1] && bigomega(n-1)==2 && bigomega(n-2)==2 \\ Andrew Howroyd, Dec 24 2021
|
|
CROSSREFS
|
Cf. A000578 (cubes), A001358 (semiprimes).
Sequence in context: A258258 A086046 A184030 * A182461 A205065 A185790
Adjacent sequences: A350281 A350282 A350283 * A350285 A350286 A350287
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Sheldon Collier, Dec 23 2021
|
|
STATUS
|
approved
|
|
|
|