login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182082
Number of pairs, (x,y), with x >= y, whose LCM does not exceed n.
1
1, 3, 5, 8, 10, 15, 17, 21, 24, 29, 31, 39, 41, 46, 51, 56, 58, 66, 68, 76, 81, 86, 88, 99, 102, 107, 111, 119, 121, 135, 137, 143, 148, 153, 158, 171, 173, 178, 183, 194, 196, 210, 212, 220, 228, 233, 235, 249, 252, 260, 265, 273, 275, 286, 291, 302, 307, 312
OFFSET
1,2
COMMENTS
Note that this is the asymmetric count. If all pairs (x,y) are counted, A061503 is obtained. - T. D. Noe, Apr 10 2012
FORMULA
a(n) = Sum_{k=1..n} (d(k^2)+1)/2, where d is the number of divisors function (A000005). - Charles R Greathouse IV, Apr 10 2012
a(n) = Sum_{k=1..n} A007875(k) * floor(n/k). - Daniel Suteu, Jan 08 2021
EXAMPLE
a(1000000) = 37429395, according to Project Euler problem #379.
MATHEMATICA
Table[Count[Flatten[Table[LCM[i, j], {i, n}, {j, i, n}]], _?(# <= n &)], {n, 60}] (* T. D. Noe, Apr 10 2012 *)
nn = 100; (Accumulate[Table[DivisorSigma[0, n^2], {n, nn}]] + Range[nn])/2 (* T. D. Noe, Apr 10 2012 *)
PROG
(Haskell) a n = length [(x, y)| x <- [1..n], y <- [x..n], lcm x y <= n]
(PARI) a(n)=(sum(k=1, n, numdiv(k^2))+n)/2 \\ Charles R Greathouse IV, Apr 10 2012
CROSSREFS
Cf. A018892, A061503 (symmetric case).
Sequence in context: A024679 A187973 A190488 * A117467 A310025 A133097
KEYWORD
nonn
AUTHOR
Walt Rorie-Baety, Apr 10 2012
STATUS
approved