Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jan 21 2021 11:37:24
%S 1,3,5,8,10,15,17,21,24,29,31,39,41,46,51,56,58,66,68,76,81,86,88,99,
%T 102,107,111,119,121,135,137,143,148,153,158,171,173,178,183,194,196,
%U 210,212,220,228,233,235,249,252,260,265,273,275,286,291,302,307,312
%N Number of pairs, (x,y), with x >= y, whose LCM does not exceed n.
%C Note that this is the asymmetric count. If all pairs (x,y) are counted, A061503 is obtained. - _T. D. Noe_, Apr 10 2012
%H Walt Rorie-Baety, <a href="/A182082/b182082.txt">Table of n, a(n) for n = 1..1000</a>
%H Project Euler, <a href="https://projecteuler.net/problem=379">Problem 379: Least common multiple count</a>
%F a(n) = Sum_{k=1..n} (d(k^2)+1)/2, where d is the number of divisors function (A000005). - _Charles R Greathouse IV_, Apr 10 2012
%F a(n) = Sum_{k=1..n} A007875(k) * floor(n/k). - _Daniel Suteu_, Jan 08 2021
%e a(1000000) = 37429395, according to Project Euler problem #379.
%t Table[Count[Flatten[Table[LCM[i, j], {i, n}, {j, i, n}]], _?(# <= n &)], {n, 60}] (* _T. D. Noe_, Apr 10 2012 *)
%t nn = 100; (Accumulate[Table[DivisorSigma[0, n^2], {n, nn}]] + Range[nn])/2 (* _T. D. Noe_, Apr 10 2012 *)
%o (Haskell) a n = length [(x,y)| x <- [1..n], y <- [x..n], lcm x y <= n]
%o (PARI) a(n)=(sum(k=1,n,numdiv(k^2))+n)/2 \\ _Charles R Greathouse IV_, Apr 10 2012
%Y Cf. A018892, A061503 (symmetric case).
%K nonn
%O 1,2
%A _Walt Rorie-Baety_, Apr 10 2012