login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181697
Length of the complete Cunningham chain of the first kind starting with prime(n).
10
5, 2, 4, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1
OFFSET
1,1
COMMENTS
Number of iterations x->2x+1 needed to get a composite number, when starting with prime(n).
prime(n) is in A005384, i.e., a Sophie Germain prime, iff a(n)>1.
a(n) is the least k such that 2^k * (prime(n)+1) - 1 is composite. Note that a(n) is well defined since 2^(p-1) * (p+1) - 1 is divisible by p for odd primes p. - Jianing Song, Nov 24 2021
LINKS
G. Löh, Long chains of nearly doubled primes, Math. Comp., 53 (1989), 751-759.
Wikipedia, Cunningham chain
FORMULA
a(n) < prime(n) for n > 1; see Löh (1989), p. 751. - Jonathan Sondow, Oct 28 2015
max(a(n), A181715(n)) = A263879(n) for n > 2. - Jonathan Sondow, Oct 30 2015
EXAMPLE
2 -> 5 -> 11 -> 23 -> 47 -> 95 = 5*19, so a(1) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1. - Jonathan Sondow, Oct 30 2015
MATHEMATICA
Table[p = Prime[n]; cnt = 1; While[p = 2*p + 1; PrimeQ[p], cnt++]; cnt, {n, 100}] (* T. D. Noe, Jul 12 2012 *)
PROG
(PARI) a(n)= n=prime(n); for(c=1, 1e9, is/*pseudo*/prime(n=2*n+1) || return(c))
CROSSREFS
See also A075712, A338945.
Sequence in context: A187059 A267120 A267484 * A317175 A257480 A181696
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 17 2010
EXTENSIONS
Definition clarified by Jonathan Sondow, Oct 28 2015
STATUS
approved