login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317175
Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the least m > 0 such that m * n contains k as a substring in its decimal representation.
2
1, 5, 2, 4, 1, 3, 3, 4, 15, 4, 2, 3, 1, 2, 5, 2, 4, 8, 8, 25, 6, 2, 2, 6, 1, 5, 3, 7, 2, 3, 5, 8, 13, 2, 35, 8, 2, 3, 5, 4, 1, 4, 9, 4, 9, 1, 3, 4, 2, 9, 12, 18, 6, 45, 10, 1, 2, 4, 3, 5, 1, 14, 2, 3, 5, 11, 1, 2, 3, 5, 7, 8, 12, 16, 23, 34, 55, 12, 1, 1, 3, 4
OFFSET
1,2
COMMENTS
This sequence is well defined: for any n > 0 and k > 0:
- ceiling(k * 10^A055642(n)/n) * n starts with k,
- hence T(n, k) <= ceil(k * 10^A055642(n)/n) <= 10 * k,
- and every column is bounded,
- the conjectured maximum values for the first 9 columns are: 5, 12, 17, 32, 25, 24, 35, 32, 72.
FORMULA
T(1, k) = k.
T(n, n) = 1.
T(n, 1) = A317173(n).
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---+------------------------------------------------------------
1| 1 2 3 4 5 6 7 8 9 10 11 12
2| 5 1 15 2 25 3 35 4 45 5 55 6
3| 4 4 1 8 5 2 9 6 3 34 37 4
4| 3 3 8 1 13 4 18 2 23 25 28 3
5| 2 4 6 8 1 12 14 16 18 2 22 24
6| 2 2 5 4 9 1 12 3 15 17 19 2
7| 2 3 5 2 5 8 1 4 7 15 16 16
8| 2 3 4 3 7 2 9 1 12 13 14 14
9| 2 3 4 5 5 4 3 2 1 12 13 14
10| 1 2 3 4 5 6 7 8 9 1 11 12
PROG
(PARI) T(n, k, base=10) = { my (w=base^#digits(k, base)); for (m=1, oo, my (mn=m*n); while (mn >= k, if (mn % w == k, return (m), mn \= base))) }
CROSSREFS
Sequence in context: A267120 A267484 A181697 * A257480 A181696 A157121
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jul 23 2018
STATUS
approved