Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Nov 24 2021 09:02:58
%S 5,2,4,1,3,1,1,1,2,2,1,1,3,1,1,2,1,1,1,1,1,1,2,6,1,1,1,1,1,2,1,2,1,1,
%T 1,1,1,1,1,2,5,1,2,1,1,1,1,1,1,1,2,2,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,
%U 1,1,1,4,1,1,1,1,1,1,1,1,2,1,2,1,1,2,1,1
%N Length of the complete Cunningham chain of the first kind starting with prime(n).
%C Number of iterations x->2x+1 needed to get a composite number, when starting with prime(n).
%C prime(n) is in A005384, i.e., a Sophie Germain prime, iff a(n)>1.
%C a(n) is the least k such that 2^k * (prime(n)+1) - 1 is composite. Note that a(n) is well defined since 2^(p-1) * (p+1) - 1 is divisible by p for odd primes p. - _Jianing Song_, Nov 24 2021
%H T. D. Noe, <a href="/A181697/b181697.txt">Table of n, a(n) for n = 1..10000</a>
%H G. Löh, <a href="http://www.jstor.org/stable/2008735">Long chains of nearly doubled primes</a>, Math. Comp., 53 (1989), 751-759.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cunningham_chain">Cunningham chain</a>
%F a(n) < prime(n) for n > 1; see Löh (1989), p. 751. - _Jonathan Sondow_, Oct 28 2015
%F max(a(n), A181715(n)) = A263879(n) for n > 2. - _Jonathan Sondow_, Oct 30 2015
%e 2 -> 5 -> 11 -> 23 -> 47 -> 95 = 5*19, so a(1) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1. - _Jonathan Sondow_, Oct 30 2015
%t Table[p = Prime[n]; cnt = 1; While[p = 2*p + 1; PrimeQ[p], cnt++]; cnt, {n, 100}] (* _T. D. Noe_, Jul 12 2012 *)
%o (PARI) a(n)= n=prime(n); for(c=1,1e9, is/*pseudo*/prime(n=2*n+1) || return(c))
%Y Cf. A005602, A181715, A263879.
%Y See also A075712, A338945.
%K nonn
%O 1,1
%A _M. F. Hasler_, Nov 17 2010
%E Definition clarified by _Jonathan Sondow_, Oct 28 2015