login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181655
Expansion of (1+2x-x^3+x^4)/(1-4x^2+3x^4).
3
1, 2, 4, 7, 14, 22, 44, 67, 134, 202, 404, 607, 1214, 1822, 3644, 5467, 10934, 16402, 32804, 49207, 98414, 147622, 295244, 442867, 885734, 1328602, 2657204, 3985807, 7971614, 11957422, 23914844, 35872267, 71744534, 107616802, 215233604
OFFSET
0,2
COMMENTS
Row sums of A181654.
FORMULA
G.f.: (1+2*x-x^3+x^4)/((1-x^2)*(1-3*x^2)).
a(n) = 5*A038754(n+1)/6 - A040001(n)/2. - R. J. Mathar, May 14 2016
a(2n-1) = A060816(n-1), a(2n) = A198643(n-1); n >= 1. a(n+1) = 2*a(n) if n is odd. - M. F. Hasler, Apr 06 2019
MATHEMATICA
CoefficientList[Series[(1+2x-x^3+x^4)/(1-4x^2+3x^4), {x, 0, 40}], x] (* or *) Join[{1}, LinearRecurrence[{0, 4, 0, -3}, {2, 4, 7, 14}, 40]] (* Harvey P. Dale, Jan 11 2012 *)
PROG
(PARI) A181655(n)=if(bitand(n, 1), 3^(n\2)*5\2, n, 3^(n\2-1)*5-1, 1) \\ M. F. Hasler, Apr 06 2019
CROSSREFS
Cf. A060816, A198643 (bisections).
Sequence in context: A216898 A176450 A263345 * A218938 A018567 A079488
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 03 2010
STATUS
approved