Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Apr 06 2019 08:45:23
%S 1,2,4,7,14,22,44,67,134,202,404,607,1214,1822,3644,5467,10934,16402,
%T 32804,49207,98414,147622,295244,442867,885734,1328602,2657204,
%U 3985807,7971614,11957422,23914844,35872267,71744534,107616802,215233604
%N Expansion of (1+2x-x^3+x^4)/(1-4x^2+3x^4).
%C Row sums of A181654.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-3).
%F G.f.: (1+2*x-x^3+x^4)/((1-x^2)*(1-3*x^2)).
%F a(n) = 5*A038754(n+1)/6 - A040001(n)/2. - _R. J. Mathar_, May 14 2016
%F a(2n-1) = A060816(n-1), a(2n) = A198643(n-1); n >= 1. a(n+1) = 2*a(n) if n is odd. - _M. F. Hasler_, Apr 06 2019
%t CoefficientList[Series[(1+2x-x^3+x^4)/(1-4x^2+3x^4),{x,0,40}],x] (* or *) Join[{1},LinearRecurrence[{0,4,0,-3},{2,4,7,14},40]] (* _Harvey P. Dale_, Jan 11 2012 *)
%o (PARI) A181655(n)=if(bitand(n,1), 3^(n\2)*5\2, n, 3^(n\2-1)*5-1, 1) \\ _M. F. Hasler_, Apr 06 2019
%Y Cf. A060816, A198643 (bisections).
%K easy,nonn
%O 0,2
%A _Paul Barry_, Nov 03 2010