The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180278 a(n) = k is the smallest number such that k^2 + 1 contains n distinct prime factors. 10
 0, 1, 3, 13, 47, 447, 2163, 24263, 241727, 2923783, 16485763, 169053487, 4535472963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(12) <= 5755933903. - Donovan Johnson, Aug 27 2012 LINKS FORMULA a(n) >= sqrt(A185952(n)-1). - Charles R Greathouse IV, Feb 17 2015 EXAMPLE a(2) = 3 because the 2 distinct prime factors of 3^2 + 1 are {2, 5} ; a(10) = 16485763 because the 10 distinct prime factors of 16485763^2 + 1 are {2, 5, 13, 17, 29, 37, 41, 73, 149, 257}. MATHEMATICA k = 1; Table[While[Length[FactorInteger[1 + k^2]] != n, k++]; k, {n, 5}] PROG (PARI) print1(r=0); for(n=1, 1e9, t=omega(n^2+1); if(t>r, r++; print1(", "n); n--)) \\ Charles R Greathouse IV, Feb 17 2015 CROSSREFS Cf. A002522, A002144, A219017. Sequence in context: A304628 A265920 A262322 * A193164 A122424 A027326 Adjacent sequences:  A180275 A180276 A180277 * A180279 A180280 A180281 KEYWORD nonn,hard AUTHOR Michel Lagneau, Jan 17 2011 EXTENSIONS a(9), a(10) and example corrected; a(11) added, Donovan Johnson, Aug 27 2012 a(12) from Giovanni Resta, May 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 18:13 EDT 2022. Contains 356122 sequences. (Running on oeis4.)