OFFSET
1,3
COMMENTS
To clarify a slight ambiguity in the definition, the heaviest box in such an arrangement should contain exactly k balls. - Gus Wiseman, Sep 22 2016
LINKS
Alois P. Heinz, Rows n = 1..200, flattened (first 59 rows from R. H. Hardin)
FORMULA
Empirical: right half of table, T(n,k) = n*binomial(2*n-k-2,n-2) for 2*k > n; also, T(n,2) = Sum_{j=1..n} binomial(n,j)*binomial(n-j,j) = 2*A097861(n). - Robert Gerbicz in the Sequence Fans Mailing List
From Alois P. Heinz, Aug 17 2018: (Start)
T(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n - ((x^k-1)/(x-1))^n.
EXAMPLE
The T(4,2)=18 arrangements are {0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200}.
Triangle starts
1
1 2
1 6 3
1 18 12 4
1 50 50 20 5
1 140 195 90 30 6
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k))))
end:
T:= (n, k)-> b(n$2, k)-b(n$2, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 16 2018
# second Maple program:
T:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n
-((x^k-1)/(x-1))^n, x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 17 2018
MATHEMATICA
T[n_, k_]:=Select[Tuples[Range[0, k], n], And[Max[#]===k, Total[#]===n]&]; (* Gus Wiseman, Sep 22 2016 *)
SequenceForm@@@T[4, 2] (* example *)
Join@@Table[Length[T[n, k]], {n, 1, 6}, {k, 1, n}] (* sequence *)
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n-j, i-1, k], {j, 0, Min[n, k]}]]];
T[n_, k_] := b[n, n, k] - b[n, n, k-1];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Aug 28 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 24 2010
STATUS
approved