login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180281
Triangle read by rows: T(n,k) = number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to k.
25
1, 1, 2, 1, 6, 3, 1, 18, 12, 4, 1, 50, 50, 20, 5, 1, 140, 195, 90, 30, 6, 1, 392, 735, 392, 147, 42, 7, 1, 1106, 2716, 1652, 672, 224, 56, 8, 1, 3138, 9912, 6804, 2970, 1080, 324, 72, 9, 1, 8952, 35850, 27600, 12825, 4950, 1650, 450, 90, 10, 1, 25652, 128865, 110715, 54450, 22022, 7865, 2420, 605, 110, 11
OFFSET
1,3
COMMENTS
To clarify a slight ambiguity in the definition, the heaviest box in such an arrangement should contain exactly k balls. - Gus Wiseman, Sep 22 2016
LINKS
Alois P. Heinz, Rows n = 1..200, flattened (first 59 rows from R. H. Hardin)
FORMULA
Empirical: right half of table, T(n,k) = n*binomial(2*n-k-2,n-2) for 2*k > n; also, T(n,2) = Sum_{j=1..n} binomial(n,j)*binomial(n-j,j) = 2*A097861(n). - Robert Gerbicz in the Sequence Fans Mailing List
From Alois P. Heinz, Aug 17 2018: (Start)
T(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n - ((x^k-1)/(x-1))^n.
T(n,k) = A305161(n,k) - A305161(n,k-1). (End)
EXAMPLE
The T(4,2)=18 arrangements are {0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200}.
Triangle starts
1
1 2
1 6 3
1 18 12 4
1 50 50 20 5
1 140 195 90 30 6
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k))))
end:
T:= (n, k)-> b(n$2, k)-b(n$2, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 16 2018
# second Maple program:
T:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n
-((x^k-1)/(x-1))^n, x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 17 2018
MATHEMATICA
T[n_, k_]:=Select[Tuples[Range[0, k], n], And[Max[#]===k, Total[#]===n]&]; (* Gus Wiseman, Sep 22 2016 *)
SequenceForm@@@T[4, 2] (* example *)
Join@@Table[Length[T[n, k]], {n, 1, 6}, {k, 1, n}] (* sequence *)
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n-j, i-1, k], {j, 0, Min[n, k]}]]];
T[n_, k_] := b[n, n, k] - b[n, n, k-1];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Aug 28 2022, after Alois P. Heinz *)
CROSSREFS
Row sums give A088218.
T(n,ceiling(n/2)) gives A318160.
T(2n,n) gives A318161.
T(2n-1,n) gives A318161.
Sequence in context: A121468 A168151 A213221 * A187888 A239102 A239103
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 24 2010
STATUS
approved