login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179618
T(n,k) = Half the number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock diagonal sum differing from its antidiagonal sum by more than 2.
1
5, 11, 11, 21, 35, 21, 43, 93, 93, 43, 85, 269, 314, 269, 85, 171, 747, 1213, 1213, 747, 171, 341, 2115, 4375, 6427, 4375, 2115, 341, 683, 5933, 16334, 31387, 31387, 16334, 5933, 683, 1365, 16717, 59925, 159651, 202841, 159651, 59925, 16717, 1365, 2731
OFFSET
1,1
COMMENTS
T(n,k) apparently is also the number of ways to tile an (n+2) X (k+2) rectangle with 1 X 1 and 2 X 2 tiles.
LINKS
EXAMPLE
Table starts
5 11 21 43 85 171 341
11 35 93 269 747 2115 5933
21 93 314 1213 4375 16334 59925
43 269 1213 6427 31387 159651 795611
85 747 4375 31387 202841 1382259 9167119
171 2115 16334 159651 1382259 12727570 113555791
341 5933 59925 795611 9167119 113555791 1355115601
683 16717 221799 4005785 61643709 1029574631 16484061769
1365 47003 817280 20064827 411595537 9258357134 198549329897
2731 132291 3018301 100764343 2758179839 83605623809 2403674442213
Some solutions for 6 X 6:
0 2 0 2 0 2 0 1 0 2 1 2 0 2 0 2 0 2 0 1 0 2 0 1
2 0 2 0 2 1 2 0 2 0 2 0 2 0 1 0 1 0 2 0 2 0 2 0
0 2 0 2 0 2 1 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
2 0 2 0 2 1 2 0 2 0 1 0 1 0 2 0 2 0 1 0 2 0 2 0
0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2
1 0 1 0 1 0 2 1 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 0
CROSSREFS
Diagonal is A063443(n+2).
Column 1 is A001045(n+3).
Column 2 is A054854(n+2).
Column 3 is A054855(n+2).
Column 4 is A063650(n+2).
Column 5 is A063651(n+2).
Column 6 is A063652(n+2).
Column 7 is A063653(n+2).
Column 8 is A063654(n+2).
Sequence in context: A060846 A352354 A113002 * A058197 A289464 A289580
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 10 2011
STATUS
approved