Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 01 2023 09:47:00
%S 5,11,11,21,35,21,43,93,93,43,85,269,314,269,85,171,747,1213,1213,747,
%T 171,341,2115,4375,6427,4375,2115,341,683,5933,16334,31387,31387,
%U 16334,5933,683,1365,16717,59925,159651,202841,159651,59925,16717,1365,2731
%N T(n,k) = Half the number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock diagonal sum differing from its antidiagonal sum by more than 2.
%C T(n,k) apparently is also the number of ways to tile an (n+2) X (k+2) rectangle with 1 X 1 and 2 X 2 tiles.
%H R. H. Hardin, <a href="/A179618/b179618.txt">Table of n, a(n) for n = 1..839</a>
%e Table starts
%e 5 11 21 43 85 171 341
%e 11 35 93 269 747 2115 5933
%e 21 93 314 1213 4375 16334 59925
%e 43 269 1213 6427 31387 159651 795611
%e 85 747 4375 31387 202841 1382259 9167119
%e 171 2115 16334 159651 1382259 12727570 113555791
%e 341 5933 59925 795611 9167119 113555791 1355115601
%e 683 16717 221799 4005785 61643709 1029574631 16484061769
%e 1365 47003 817280 20064827 411595537 9258357134 198549329897
%e 2731 132291 3018301 100764343 2758179839 83605623809 2403674442213
%e Some solutions for 6 X 6:
%e 0 2 0 2 0 2 0 1 0 2 1 2 0 2 0 2 0 2 0 1 0 2 0 1
%e 2 0 2 0 2 1 2 0 2 0 2 0 2 0 1 0 1 0 2 0 2 0 2 0
%e 0 2 0 2 0 2 1 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
%e 2 0 2 0 2 1 2 0 2 0 1 0 1 0 2 0 2 0 1 0 2 0 2 0
%e 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2
%e 1 0 1 0 1 0 2 1 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 0
%Y Diagonal is A063443(n+2).
%Y Column 1 is A001045(n+3).
%Y Column 2 is A054854(n+2).
%Y Column 3 is A054855(n+2).
%Y Column 4 is A063650(n+2).
%Y Column 5 is A063651(n+2).
%Y Column 6 is A063652(n+2).
%Y Column 7 is A063653(n+2).
%Y Column 8 is A063654(n+2).
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 10 2011