login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178942 a(1) = 3; for n >= 2, a(n) is the smallest prime q > a(n-1) such that, for the previous prime p and the following prime r, the fraction (q-p)/(r-q) has denominator equal to A001223(n)/2 (or 0, if no such prime exists). 2
3, 5, 11, 13, 17, 19, 29, 37, 47, 53, 61, 67, 71, 79, 83, 131, 137, 151, 163, 173, 233, 277, 331, 359, 379, 397, 401, 419, 439, 773, 823, 941, 947, 1021, 1031, 1033, 1063, 1087, 1097, 1117, 1123, 1153, 1187, 1237, 1277, 1709, 1789, 1823 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Conjecture: a(n) > 0 for all n.
The smallest prime(k) > a(n-1) such that the denominator of A001223(k-1)/A001223(k) equals A001223(n)/2. - R. J. Mathar, Jan 07 2011
LINKS
MAPLE
A001223 := proc(n) ithprime(n+1)-ithprime(n) ; end proc:
A178942 := proc(n) option remember; local p, q, r ; if n = 1 then 3; else for q from procname(n-1)+1 do if isprime(q) then p := prevprime(q) ; r := nextprime(q) ; denom((q-p)/(r-q)) ; if % = A001223(n)/2 then return q; end if; end if; end do: end if; end proc: # R. J. Mathar, Jan 07 2011
MATHEMATICA
A001223[n_] := Prime[n + 1] - Prime[n];
a[n_] := a[n] = Module[{p, q, r, d}, If[n == 1, 3, For[q = a[n - 1] + 1, True, q++, If [PrimeQ[q], p = NextPrime[q, -1]; r = NextPrime[q]; d = Denominator[(q - p)/(r - q)]; If[d == A001223[n]/2, Return[q]]]]]];
Array[a, 48] (* Jean-François Alcover, May 21 2020, after Maple *)
CROSSREFS
Sequence in context: A045316 A040100 A076757 * A045404 A154500 A152460
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jan 06 2011
EXTENSIONS
More terms from Alois P. Heinz, Jan 06 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:55 EST 2023. Contains 367662 sequences. (Running on oeis4.)