

A178942


a(1) = 3; for n >= 2, a(n) is the smallest prime q > a(n1) such that, for the previous prime p and the following prime r, the fraction (qp)/(rq) has denominator equal to A001223(n)/2 (or 0, if no such prime exists).


2



3, 5, 11, 13, 17, 19, 29, 37, 47, 53, 61, 67, 71, 79, 83, 131, 137, 151, 163, 173, 233, 277, 331, 359, 379, 397, 401, 419, 439, 773, 823, 941, 947, 1021, 1031, 1033, 1063, 1087, 1097, 1117, 1123, 1153, 1187, 1237, 1277, 1709, 1789, 1823
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: a(n) > 0 for all n.
The smallest prime(k) > a(n1) such that the denominator of A001223(k1)/A001223(k) equals A001223(n)/2.  R. J. Mathar, Jan 07 2011


LINKS

Table of n, a(n) for n=1..48.


MAPLE

A001223 := proc(n) ithprime(n+1)ithprime(n) ; end proc:
A178942 := proc(n) option remember; local p, q, r ; if n = 1 then 3; else for q from procname(n1)+1 do if isprime(q) then p := prevprime(q) ; r := nextprime(q) ; denom((qp)/(rq)) ; if % = A001223(n)/2 then return q; end if; end if; end do: end if; end proc: # R. J. Mathar, Jan 07 2011


CROSSREFS

Cf. A001223, A168253, A179210, A179234, A179240, A179328.
Sequence in context: A045316 A040100 A076757 * A045404 A152460 A130097
Adjacent sequences: A178939 A178940 A178941 * A178943 A178944 A178945


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Jan 06 2011


EXTENSIONS

More terms from Alois P. Heinz, Jan 06 2011


STATUS

approved



