login
A178940
Number of flat special rim-hook tableaux.
1
1, 1, 2, 3, 6, 9, 18, 27, 50, 79, 138, 215, 378, 583, 986, 1557, 2574, 4011, 6630, 10269, 16682, 26041, 41670, 64577, 103434, 159313, 252062, 389895, 611862, 940437, 1474626, 2256927, 3512906, 5384611, 8327274, 12708827, 19646946, 29869723, 45911834, 69859113
OFFSET
0,3
COMMENTS
See Egge link for precise definition.
A composition of n is a sequence of positive integers whose sum is n. The number of flat special rim-hook tableaux is the number of compositions of n (a1, a2, ..., ar) such that (a1+r, a2+r-1, ..., ar+1) are all distinct. - Mike Zabrocki, Nov 12 2023.
LINKS
E. Egge et al., From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix, European Journal of Combinatorics, Volume 31, Issue 8, December 2010, Pages 2014-2027
CROSSREFS
Cf. A178941.
Sequence in context: A351018 A180684 A206100 * A018264 A081741 A035522
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2010
EXTENSIONS
More terms from Mike Zabrocki, Nov 12 2023
a(0)=1 prepended and more terms added by Alois P. Heinz, Nov 13 2023
STATUS
approved