login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175799
Number of real zeros of the polynomial whose coefficients are the decimal expansion of Pi truncated to n places (A011545).
2
0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 2, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0
OFFSET
0,7
COMMENTS
a(n) = number of real zeros of the polynomial P(n,x) = sum_{k=0..n-1} d(k) x^k, where d(k) are the digits of the decimal expansion of floor(Pi*10^n), n=0,1,2,...
From Robert Israel, Dec 19 2018: (Start)
If d(n) = 0 then P(n,x)=P(n-1,x) so a(n)=a(n-1).
If d(n) <> 0 and P(n,x) has nonzero discriminant, then a(n) == n (mod 2).
Conjecture: P(n,x) has nonzero discriminant for all n >= 1.
Record values: a(0)=0, a(1)=1, a(6)=2, a(135)=3, a(374)=4. (End)
LINKS
EXAMPLE
a(0) = 0 because 3 => P(0,x)=3 is a constant and has 0 real root;
a(1) = 1 because 31 => P(1,x) = 1+3x has 1 real root;
a(6) = 2 because 3141592 => P(6,x) = 2 + 9x + 5x^2 + x^3 + 4x^4 + x^5 + 3x^6 has 2 real roots.
MAPLE
L:= convert(floor(10^100*Pi), base, 10):
f:= proc(n) local P, x, i;
P:=add(L[-i]*x^(i-1), i=1..n+1);
sturm(sturmseq(P, x), x, -infinity, infinity)
end proc:
map(f, [$0..100]); # Robert Israel, Dec 19 2018
PROG
(PARI) A175799(n)={ default(realprecision)>n || default(realprecision, n+1); sum(k=1, #n=factor(1.*Pol(eval(Vec(Str(Pi*10^n\1)))))~, (poldegree(n[1, k])==1)*n[2, k] )} /* factorization over the reals => linear factor for each root. poldegree()==1 could be replaced by poldisc()>=0 */ \\ M. F. Hasler, Dec 04 2010
CROSSREFS
Sequence in context: A121362 A234694 A091704 * A123739 A165575 A165582
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 04 2010
EXTENSIONS
Corrected and extended by Robert Israel, Dec 19 2018
STATUS
approved