login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175582
a(n) = sigma(n-th Zumkeller number)/2.
3
6, 14, 21, 30, 28, 36, 45, 48, 62, 60, 60, 84, 72, 72, 84, 93, 112, 90, 117, 126, 108, 105, 140, 124, 120, 180, 156, 168, 144, 168, 186, 196, 189, 240, 180, 186, 273, 192, 254, 234, 252, 217, 288, 300, 252, 228, 252, 280, 273, 372, 252, 364, 264, 294, 360, 360, 279
OFFSET
1,1
COMMENTS
Conjecture: Any 4 consecutive terms include at least one Zumkeller number (verified for the first 10^5 terms). - Ivan N. Ianakiev, Oct 17 2019
FORMULA
a(n) = A000203(A083207(n))/2. - Michel Marcus, Aug 21 2014
MATHEMATICA
ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[ Mod[ds, 2] > 0, False, t = CoefficientList[ Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; DivisorSigma[1, Select[ Range@ 275, ZumkellerQ]]/2 (* Robert G. Wilson v, Aug 03 2010 *)
PROG
(Python)
from sympy import divisors
import numpy as np
A175582 = []
for n in range(1, 10**3):
d = divisors(n)
s = sum(d)
if not s % 2 and 2*n <= s:
d.remove(n)
s2, ld = int(s/2-n), len(d)
z = np.zeros((ld+1, s2+1), dtype=int)
for i in range(1, ld+1):
y = min(d[i-1], s2+1)
z[i, range(y)] = z[i-1, range(y)]
z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)
if z[i, s2] == s2:
A175582.append(int(s/2))
break
# Chai Wah Wu, Aug 21 2014
CROSSREFS
Sequence in context: A184924 A110223 A190504 * A182081 A125086 A195063
KEYWORD
nonn
AUTHOR
Vladislav-Stepan Malakhovsky and Juri-Stepan Gerasimov, Jul 15 2010
EXTENSIONS
Inserted a(45) and corrected typo in a(49) and crossrefs by Chai Wah Wu, Aug 21 2014
STATUS
approved