login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(n-th Zumkeller number)/2.
3

%I #29 Oct 18 2024 18:00:22

%S 6,14,21,30,28,36,45,48,62,60,60,84,72,72,84,93,112,90,117,126,108,

%T 105,140,124,120,180,156,168,144,168,186,196,189,240,180,186,273,192,

%U 254,234,252,217,288,300,252,228,252,280,273,372,252,364,264,294,360,360,279

%N a(n) = sigma(n-th Zumkeller number)/2.

%C Conjecture: Any 4 consecutive terms include at least one Zumkeller number (verified for the first 10^5 terms). - _Ivan N. Ianakiev_, Oct 17 2019

%H Chai Wah Wu, <a href="/A175582/b175582.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000203(A083207(n))/2. - _Michel Marcus_, Aug 21 2014

%t ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[ Mod[ds, 2] > 0, False, t = CoefficientList[ Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; DivisorSigma[1, Select[ Range@ 275, ZumkellerQ]]/2 (* _Robert G. Wilson v_, Aug 03 2010 *)

%o (Python)

%o from sympy import divisors

%o import numpy as np

%o A175582 = []

%o for n in range(1, 10**3):

%o d = divisors(n)

%o s = sum(d)

%o if not s % 2 and 2*n <= s:

%o d.remove(n)

%o s2, ld = int(s/2-n), len(d)

%o z = np.zeros((ld+1, s2+1), dtype=int)

%o for i in range(1, ld+1):

%o y = min(d[i-1], s2+1)

%o z[i, range(y)] = z[i-1, range(y)]

%o z[i, range(y, s2+1)] = np.maximum(z[i-1, range(y, s2+1)], z[i-1, range(0, s2+1-y)]+y)

%o if z[i, s2] == s2:

%o A175582.append(int(s/2))

%o break

%o # _Chai Wah Wu_, Aug 21 2014

%Y Cf. A083207, A000203.

%K nonn

%O 1,1

%A Vladislav-Stepan Malakhovsky and _Juri-Stepan Gerasimov_, Jul 15 2010

%E Inserted a(45) and corrected typo in a(49) and crossrefs by _Chai Wah Wu_, Aug 21 2014