login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A172348
Index k of the semiprime A001358(k) = prime(n) * prime(n+1).
3
2, 6, 13, 26, 48, 75, 103, 135, 199, 270, 338, 443, 508, 581, 706, 878, 1001, 1124, 1305, 1413, 1565, 1764, 1978, 2299, 2571, 2724, 2886, 3052, 3213, 3710, 4259, 4581, 4859, 5259, 5668, 5954, 6409, 6797, 7184, 7696, 8029, 8515, 9062, 9325, 9608, 10246, 11444
OFFSET
1,1
COMMENTS
The positions of products of 2 successive primes in A001358. - Juri-Stepan Gerasimov, Apr 14 2010
REFERENCES
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, 1909.
Derrick H. Lehmer, Guide to Tables in the Theory of Numbers Washington, D.C. 1941.
LINKS
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
FORMULA
a(n) = {k: A001358(k) = A006094(n)}.
EXAMPLE
n=1: 6 = 2 * 3 = prime(1) * prime(2) = semiprime(2). Therefore a(1) = 2.
n=2: 15 = 3 * 5 = prime(2) * prime(3) = semiprime(6). Therefore a(2) = 6.
n=3: 35 = 5 * 7 = prime(3) * prime(4) = semiprime(13). Therefore a(3) = 13.
MAPLE
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a)= 2 then return a; end if; end do ; end if; end proc:
A006094 := proc(n) ithprime(n)*ithprime(n+1) ; end proc:
A172348 := proc(n) pp := A006094(n) ; for k from 1 do if A001358(k) = pp then return k; end if; end do ; end proc:
seq(A172348(n), n=1..70) ; # R. J. Mathar, Feb 09 2010
MATHEMATICA
semiPrimePi[n_] := Sum[ PrimePi[n/Prime@ i] - i + 1, {i, PrimePi@ Sqrt@ n}]; semiPrimePi@# & /@ Table[ Prime[n] Prime[n + 1], {n, 47}] (* Robert G. Wilson v, Feb 02 2013 *)
nn=50000; Flatten[Module[{sp=Select[Range[nn+PrimePi[nn]], PrimeOmega[#] == 2&]}, Table[ Position[sp, Prime[n]Prime[n+1]], {n, PrimePi[nn]}]]] (* Harvey P. Dale, Sep 07 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Feb 01 2010
EXTENSIONS
Entries checked by R. J. Mathar, Feb 09 2010
STATUS
approved