login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259577
Sum of numbers in the n-th antidiagonal of the reciprocity array of 1.
3
1, 2, 6, 13, 26, 44, 72, 108, 156, 215, 290, 381, 486, 610, 758, 924, 1112, 1329, 1566, 1839, 2134, 2456, 2816, 3220, 3640, 4099, 4608, 5153, 5726, 6368, 7020, 7744, 8504, 9305, 10180, 11103, 12042, 13060, 14146, 15296, 16460, 17739, 19026, 20421, 21876
OFFSET
1,2
COMMENTS
The "reciprocity law" that Sum{[(n*k+x)/m] : k = 0..m} = Sum{[(m*k+x)/n] : k = 0..n} where x is a real number and m and n are positive integers, is proved in Section 3.5 of Concrete Mathematics (see References). See A259572 for a guide to related sequences.
REFERENCES
R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
LINKS
FORMULA
a(n) = sum{sum{floor((n*k + x)/m), k=0..m-1, m=1..n}, where x = 1.
a(n) = n^3 / 4 + O(n^2). - Charles R Greathouse IV, Mar 22 2017
MATHEMATICA
f[n_] := Sum[Floor[(n*k + 1)/m], {m, n}, {k, 0, m - 1}]; Array[f, 50]
PROG
(PARI) a(n)=x=1; r=0; for(m=1, n, for(k=0, m-1, r=r+floor((n*k+x)/m))); return(r);
main(size)=return(vector(size, n, a(n))) \\ Anders Hellström, Jul 06 2015
(PARI) a(n)=sum(m=1, n, sum(k=0, m-1, (n*k+1)\m)) \\ Charles R Greathouse IV, Mar 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 01 2015
STATUS
approved