login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of numbers in the n-th antidiagonal of the reciprocity array of 1.
3

%I #12 Mar 22 2017 17:13:45

%S 1,2,6,13,26,44,72,108,156,215,290,381,486,610,758,924,1112,1329,1566,

%T 1839,2134,2456,2816,3220,3640,4099,4608,5153,5726,6368,7020,7744,

%U 8504,9305,10180,11103,12042,13060,14146,15296,16460,17739,19026,20421,21876

%N Sum of numbers in the n-th antidiagonal of the reciprocity array of 1.

%C The "reciprocity law" that Sum{[(n*k+x)/m] : k = 0..m} = Sum{[(m*k+x)/n] : k = 0..n} where x is a real number and m and n are positive integers, is proved in Section 3.5 of Concrete Mathematics (see References). See A259572 for a guide to related sequences.

%D R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.

%H Clark Kimberling, <a href="/A259577/b259577.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = sum{sum{floor((n*k + x)/m), k=0..m-1, m=1..n}, where x = 1.

%F a(n) = n^3 / 4 + O(n^2). - _Charles R Greathouse IV_, Mar 22 2017

%t f[n_] := Sum[Floor[(n*k + 1)/m], {m, n}, {k, 0, m - 1}]; Array[f, 50]

%o (PARI) a(n)=x=1;r=0;for(m=1,n,for(k=0,m-1,r=r+floor((n*k+x)/m)));return(r);

%o main(size)=return(vector(size,n,a(n))) \\ _Anders Hellström_, Jul 06 2015

%o (PARI) a(n)=sum(m=1,n, sum(k=0,m-1, (n*k+1)\m)) \\ _Charles R Greathouse IV_, Mar 22 2017

%Y Cf. A259572, A259574, A259575.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jul 01 2015