OFFSET
1,1
COMMENTS
It seems that this sequence also gives the values of n such that the equation x^2 - n*y^2 = n has integer solutions. - Colin Barker, Aug 20 2013
FORMULA
MATHEMATICA
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == -1, AppendTo[cr, n]]], {n, 2, 1000}]; cr (* Artur Jasinski, Oct 10 2011 *)
PROG
(PARI) { for(n=1, 1000, if(issquare(n), next); if( norm(bnfinit(x^2-n).fu[1])==-1, print1(n, ", ")) ) }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jan 21 2010
EXTENSIONS
Edited by Max Alekseyev, Mar 09 2010
STATUS
approved