login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202057
Numbers which are not perfect squares and such that all prime divisors are congruent to 1 or 2 mod 4.
5
2, 5, 8, 10, 13, 17, 20, 26, 29, 32, 34, 37, 40, 41, 50, 52, 53, 58, 61, 65, 68, 73, 74, 80, 82, 85, 89, 97, 101, 104, 106, 109, 113, 116, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 157, 160, 164, 170, 173, 178, 181, 185, 193, 194, 197, 200, 202, 205, 208, 212, 218, 221, 226, 229, 232, 233, 241, 244, 250, 257, 260, 265, 269, 272, 274
OFFSET
1,1
COMMENTS
This sequence follows conjecture from A201278 that Mordell's elliptic curve x^3-y^2 = d can contain points {x,y} with quadratic extension sqrt(k) over rationals if and only k belongs to this sequence.
Members of A072437 that are not perfect squares. - Franklin T. Adams-Watters, Dec 15 2011
LINKS
EXAMPLE
a(3)=8 because 8 isn't perfect square and only one prime divisor 2 is congruent to 2 mod 4.
MATHEMATICA
aa = {}; Do[pp = FactorInteger[j]; if = False; Do[If[Mod[pp[[n]][[1]], 4] == 3 || Mod[pp[[n]][[1]], 4] == 0, if = True], {n, 1, Length[pp]}]; If[if == False, If[IntegerQ[Sqrt[j]] == False, AppendTo[aa, j]]], {j, 2, 200}]; aa
seqQ[n_] := !IntegerQ@Sqrt[n] && AllTrue[FactorInteger[n][[;; , 1]], MemberQ[{1, 2}, Mod[#, 4]] &]; Select[Range[300], seqQ] (* Amiram Eldar, Mar 21 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 10 2011
STATUS
approved