login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171814
Triangle T : T(n,k)= A007318(n,k)*A001700(n-k).
0
1, 3, 1, 10, 6, 1, 35, 30, 9, 1, 126, 140, 60, 12, 1, 462, 630, 350, 100, 15, 1, 1716, 2772, 1890, 700, 150, 18, 1, 6435, 12012, 9702, 4410, 1225, 210, 21, 1, 24310, 51480, 48048, 25872, 8820, 1960, 280, 24, 1
OFFSET
0,2
FORMULA
Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n+1), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively.
Conjectural g.f.: 1/(2*t)*( sqrt( (1 - x*t)/(1 - (4 + x)*t) ) - 1 ) = 1 + (3 + x)*t + (10 + 6*x + x^2)*t^2 + .... - Peter Bala, Nov 10 2013
E.g.f. of column k: exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - Mélika Tebni, Dec 23 2023
EXAMPLE
Triangle begins:
1;
3, 1;
10, 6, 1;
35, 30, 9, 1;
126, 140, 60, 12, 1;
462, 630, 350, 100, 15, 1;
1716, 2772, 1890, 700, 150, 18, 1;
...
MATHEMATICA
T[n_, k_]:=n!SeriesCoefficient[Exp[2*x]*(BesselI[0, 2*x]+BesselI[1, 2*x])*x^k / k!, {x, 0, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]//Flatten (* Stefano Spezia, Dec 23 2023 *)
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 19 2009
STATUS
approved