Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 23 2023 08:31:08
%S 1,3,1,10,6,1,35,30,9,1,126,140,60,12,1,462,630,350,100,15,1,1716,
%T 2772,1890,700,150,18,1,6435,12012,9702,4410,1225,210,21,1,24310,
%U 51480,48048,25872,8820,1960,280,24,1
%N Triangle T : T(n,k)= A007318(n,k)*A001700(n-k).
%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n+1), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively.
%F Conjectural g.f.: 1/(2*t)*( sqrt( (1 - x*t)/(1 - (4 + x)*t) ) - 1 ) = 1 + (3 + x)*t + (10 + 6*x + x^2)*t^2 + .... - _Peter Bala_, Nov 10 2013
%F E.g.f. of column k: exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - _Mélika Tebni_, Dec 23 2023
%e Triangle begins:
%e 1;
%e 3, 1;
%e 10, 6, 1;
%e 35, 30, 9, 1;
%e 126, 140, 60, 12, 1;
%e 462, 630, 350, 100, 15, 1;
%e 1716, 2772, 1890, 700, 150, 18, 1;
%e ...
%t T[n_,k_]:=n!SeriesCoefficient[Exp[2*x]*(BesselI[0,2*x]+BesselI[1,2*x])*x^k / k!,{x,0,n}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* _Stefano Spezia_, Dec 23 2023 *)
%Y Cf. A107230, A171651
%Y Cf. A001405, A001700, A005573, A005773, A026378, A099323, A122898, A168491.
%K nonn,tabl
%O 0,2
%A _Philippe Deléham_, Dec 19 2009