login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171142
Triangle T(n,k) of the coefficients [x^k] of the polynomial p_n(x), where p_n(x)=(1+x)*p_{n-1}(x) if n even, p_n(x) = (x^2+4x+1)^((n-1)/2) if n odd.
4
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 18, 8, 1, 1, 9, 26, 26, 9, 1, 1, 12, 51, 88, 51, 12, 1, 1, 13, 63, 139, 139, 63, 13, 1, 1, 16, 100, 304, 454, 304, 100, 16, 1, 1, 17, 116, 404, 758, 758, 404, 116, 17, 1, 1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1, 1, 21, 185, 885
OFFSET
1,5
COMMENTS
Row sums are apparently in A026549.
EXAMPLE
The triangle starts in row n=1 with column 0<=k<n as:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 8, 18, 8, 1;
1, 9, 26, 26, 9, 1;
1, 12, 51, 88, 51, 12, 1;
1, 13, 63, 139, 139, 63, 13, 1;
1, 16, 100, 304, 454, 304, 100, 16, 1;
1, 17, 116, 404, 758, 758, 404, 116, 17, 1;
1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1;
1, 21, 185, 885, 2490, 4194, 4194, 2490, 885, 185, 21, 1;
MAPLE
A171142P := proc(n) option remember; if type(n, 'even') then (x+1)*procname(n-1) ; else (x^2+4*x+1)^((n-1)/2) ; end if; expand(%) ; end proc:
A171142 := proc(n, k) coeff(A171142P(n, x), x, k) ; end proc:
MATHEMATICA
Clear[p, n, x, a]
w = 4;
p[x, 1] := 1;
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + w*x + 1)^Floor[n/2]];
a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
Flatten[a]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved