login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171141
Numbers that are congruent to {6,33} mod 41.
1
6, 33, 47, 74, 88, 115, 129, 156, 170, 197, 211, 238, 252, 279, 293, 320, 334, 361, 375, 402, 416, 443, 457, 484, 498, 525, 539, 566, 580, 607, 621, 648, 662, 689, 703, 730, 744, 771, 785, 812, 826, 853, 867, 894, 908, 935, 949, 976, 990, 1017, 1031, 1058
OFFSET
1,1
COMMENTS
Conjecture: Numbers n>6 such that 36*n^2+72*n+35 = (6*n+5)*(6*n+7) is not of the form p*(p+2), where p and p+2 are primes.
This conjecture is evident: in fact, it is sufficient to observe that a(2k) = 41*k-8 and a(2k+1) = 41*k+6, therefore 6*a(2k)+7 = 41*(6*k-1) and 6*a(2k+1)+5 = 41*(6*k+1). [Bruno Berselli, Jan 07 2013]
FORMULA
G.f.: x*(6 + 27*x + 8*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, Jan 05 2013
a(n) = (82*n + 13*(-1)^n - 45)/4. - Vincenzo Librandi, Jan 05 2013
a(n) = a(n-1) + a(n-2) - a(n-3). - Vincenzo Librandi, Jan 05 2013
MATHEMATICA
CoefficientList[Series[(6 + 27*x + 8*x^2)/((1 + x)*(1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jan 05 2013 *)
(* By definition: *) Flatten[#+{6, 33}&/@(41*Range[0, 26])] (* Bruno Berselli, Jan 05 2013 *)
LinearRecurrence[{1, 1, -1}, {6, 33, 47}, 60] (* Harvey P. Dale, Aug 05 2023 *)
PROG
(Magma) [(82*n+13*(-1)^n-45)/4: n in [1..60]]; // Vincenzo Librandi, Jan 05 2013
CROSSREFS
Sequence in context: A222749 A132548 A140521 * A069065 A073343 A157872
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 04 2009
STATUS
approved