login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157872
a(n) = 9*n^2 - 3.
3
6, 33, 78, 141, 222, 321, 438, 573, 726, 897, 1086, 1293, 1518, 1761, 2022, 2301, 2598, 2913, 3246, 3597, 3966, 4353, 4758, 5181, 5622, 6081, 6558, 7053, 7566, 8097, 8646, 9213, 9798, 10401, 11022, 11661, 12318, 12993, 13686, 14397, 15126, 15873, 16638
OFFSET
1,1
COMMENTS
The identity (6n^2 - 1)^2 - (9n^2 - 3)*(2n)^2 = 1 can be written as A140811(n-1)^2 - a(n)*A005843(n+1)^2 = 1. - Vincenzo Librandi, Feb 05 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1. [broken link]
FORMULA
G.f.: -3*x*(2 + 5*x - x^2)/(x - 1)^3. - Vincenzo Librandi, Feb 05 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 05 2012
a(n) = a(n-1) + 18*n - 9. - Vincenzo Librandi, Feb 05 2012
From Amiram Eldar, May 28 2022: (Start)
a(n) = 3*A080663(n).
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(3)*cot(Pi/sqrt(3))))/6.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(3))*csc(Pi/sqrt(3)) - 1)/6. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {6, 33, 78}, 50] (* Vincenzo Librandi, Feb 05 2012 *)
9*Range[50]^2-3 (* Harvey P. Dale, Aug 04 2024 *)
PROG
(Magma) I:=[6, 33, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 05 2012
(PARI) for(n=1, 40, print1(9*n^2 - 3", ")); \\ Vincenzo Librandi, Feb 05 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 08 2009
STATUS
approved