login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274218
Numbers such that the sum of their digits is equal to the sum of digits of their aliquot parts.
1
6, 33, 87, 249, 303, 519, 573, 681, 843, 951, 1059, 1329, 1383, 1923, 1977, 2463, 2733, 2787, 2949, 3057, 3273, 3327, 3543, 3651, 3867, 3921, 4083, 4353, 4677, 5163, 5433, 5703, 5919, 6081, 6243, 6297, 6621, 6891, 7053, 7323, 7377, 7647, 7971, 8079, 8133, 8187
OFFSET
1,1
LINKS
EXAMPLE
Sum of digits of 8884 is 8 + 8 + 8 + 4 = 28. Its aliquot parts are 1, 2, 4, 2221, 4442 and their sum is 1 + 2 + 4 + 2 + 2 + 2 + 1 + 4 + 4 + 4 + 2 = 28.
MAPLE
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do
y:=y+(x mod 10); x:=trunc(x/10); od; y; end:
P:=proc(q) local a, k, n; for n from 1 to q do a:=sort([op(divisors(n))]);
if T(n)=add(T(a[k]), k=1..nops(a)-1) then print(n); fi; od; end: P(10^6);
MATHEMATICA
Select[Range[10^4], Total@ IntegerDigits@ # == Total[Total@ IntegerDigits@ # & /@ Most@ Divisors@ #] &] (* Michael De Vlieger, Jun 14 2016 *)
CROSSREFS
Sequence in context: A073343 A157872 A153127 * A135526 A204185 A057818
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Jun 14 2016
STATUS
approved