Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 19 2016 06:21:57
%S 6,33,87,249,303,519,573,681,843,951,1059,1329,1383,1923,1977,2463,
%T 2733,2787,2949,3057,3273,3327,3543,3651,3867,3921,4083,4353,4677,
%U 5163,5433,5703,5919,6081,6243,6297,6621,6891,7053,7323,7377,7647,7971,8079,8133,8187
%N Numbers such that the sum of their digits is equal to the sum of digits of their aliquot parts.
%H Paolo P. Lava, <a href="/A274218/b274218.txt">Table of n, a(n) for n = 1..1000</a>
%e Sum of digits of 8884 is 8 + 8 + 8 + 4 = 28. Its aliquot parts are 1, 2, 4, 2221, 4442 and their sum is 1 + 2 + 4 + 2 + 2 + 2 + 1 + 4 + 4 + 4 + 2 = 28.
%p with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do
%p y:=y+(x mod 10); x:=trunc(x/10); od; y; end:
%p P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
%p if T(n)=add(T(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^6);
%t Select[Range[10^4], Total@ IntegerDigits@ # == Total[Total@ IntegerDigits@ # & /@ Most@ Divisors@ #] &] (* _Michael De Vlieger_, Jun 14 2016 *)
%Y Cf. A007953, A006753.
%K nonn,base,easy
%O 1,1
%A _Paolo P. Lava_, Jun 14 2016