login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157870
a(n) = (4*n+1)*(4*n+2) = (4*n+2)!/(4*n)!.
2
2, 30, 90, 182, 306, 462, 650, 870, 1122, 1406, 1722, 2070, 2450, 2862, 3306, 3782, 4290, 4830, 5402, 6006, 6642, 7310, 8010, 8742, 9506, 10302, 11130, 11990, 12882, 13806, 14762, 15750, 16770, 17822, 18906, 20022, 21170, 22350, 23562, 24806, 26082, 27390, 28730, 30102, 31506, 32942
OFFSET
0,1
FORMULA
a(n) = A002378(4*n+1) = 2*A014634(n). - R. J. Mathar, Mar 11 2009
From Vincenzo Librandi, Jul 10 2012: (Start)
G.f.: 2*(1+12*x+3*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/8 + log(2)/4.
Sum_{n>=0} (-1)^n/a(n) = ((sqrt(2)-1)*Pi + sqrt(2)*log((2+sqrt(2))/(2-sqrt(2))))/8. (End)
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: 2*exp(x)*(1 + 14*x + 8*x^2).
a(n) = A016813(n)*A016825(n). (End)
MATHEMATICA
Table[(4n+1)*(4n+2), {n, 0, 50}] (* Vincenzo Librandi, Jul 10 2012 *)
PROG
(Magma) (4*n+1)*(4*n+2); // Vincenzo Librandi Jul 10 2012
(PARI) a(n)=(4*n+1)*(4*n+2) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
SUNKU Sai Swaroop (sai2020(AT)gmail.com), Mar 08 2009
EXTENSIONS
Definition corrected and sequence extended by R. J. Mathar, Mar 11 2009
STATUS
approved