login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136489
Triangle T(n, k) = 3*A007318(n, k) - 2*A034851(n, k).
2
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 10, 8, 1, 1, 9, 18, 18, 9, 1, 1, 12, 27, 40, 27, 12, 1, 1, 13, 39, 67, 67, 39, 13, 1, 1, 16, 52, 112, 134, 112, 52, 16, 1, 1, 17, 68, 164, 246, 246, 164, 68, 17, 1, 1, 20, 85, 240, 410, 504, 410, 240, 85, 20, 1
OFFSET
0,5
FORMULA
T(n, k) = 3*A007318(n, k) - 2*A034851(n, k).
Sum_{k=0..n} T(n, k) = A122746(n).
From G. C. Greubel, Aug 01 2023: (Start)
T(n, k) = 2*A007318(n, k) - A051159(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) if k is even.
T(n, n-k) = T(n, k).
T(n, n-1) = A042948(n).
Sum_{k=0..n} (-1)^k * T(n, k) = 2*[n=0] - A077957(n). (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 8, 10, 8, 1;
1, 9, 18, 18, 9, 1;
1, 12, 27, 40, 27, 12, 1;
1, 13, 39, 67, 67, 39, 13, 1;
1, 16, 52, 112, 134, 112, 52, 16, 1;
1, 17, 68, 164, 246, 246, 164, 68, 17, 1;
...
MATHEMATICA
T[n_, k_]:= 2*Binomial[n, k] -Binomial[Mod[n, 2], Mod[k, 2]]*Binomial[Floor[n/2], Floor[k/2]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 01 2023 *)
PROG
(Magma)
A136489:= func< n, k | 2*Binomial(n, k) - Binomial(n mod 2, k mod 2)*Binomial(Floor(n/2), Floor(k/2)) >;
[A136489(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2023
(SageMath)
def A136489(n, k): return 2*binomial(n, k) - binomial(n%2, k%2)*binomial(n//2, k//2)
flatten([[A136489(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 01 2023
CROSSREFS
Cf. A034851, A042948, A077957, A122746 (row sums).
Sequence in context: A146770 A143334 A156050 * A166455 A171142 A174037
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Jan 01 2008
STATUS
approved