login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136486
Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.
3
0, 4, 12, 24, 52, 76, 112, 148, 192, 256, 308, 376, 440, 524, 608, 688, 796, 904, 1012, 1124, 1232, 1372, 1508, 1648, 1788, 1952, 2112, 2268, 2448, 2616, 2812, 3000, 3184, 3388, 3608, 3828, 4052, 4272, 4516, 4748, 5008, 5252, 5512, 5784, 6044, 6328, 6600
OFFSET
0,2
COMMENTS
a(n) is the number of complete squares that fit inside the circle with radius n+1/2, drawn on squared paper.
LINKS
FORMULA
a(n) = 4*Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
a(n) = 4 * A136484(n).
a(n) = 2 * A136515(n).
a(n) = A136485(2*n+1).
Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
EXAMPLE
a(1) = 4 because a circle centered at the origin and of radius 1+1/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
MATHEMATICA
Table[4*Sum[Floor[Sqrt[(n + 1/2)^2 - k^2]], {k, n}], {n, 0, 100}]
PROG
(Magma)
A136486:= func< n | n eq 0 select 0 else 4*(&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
[A136486(n): n in [0..100]]; // G. C. Greubel, Jul 30 2023
(SageMath)
def A136486(n): return 4*sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
[A136486(n) for n in range(101)] # G. C. Greubel, Jul 30 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008
STATUS
approved