login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.
3

%I #6 Jul 31 2023 02:59:33

%S 0,4,12,24,52,76,112,148,192,256,308,376,440,524,608,688,796,904,1012,

%T 1124,1232,1372,1508,1648,1788,1952,2112,2268,2448,2616,2812,3000,

%U 3184,3388,3608,3828,4052,4272,4516,4748,5008,5252,5512,5784,6044,6328,6600

%N Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.

%C a(n) is the number of complete squares that fit inside the circle with radius n+1/2, drawn on squared paper.

%H G. C. Greubel, <a href="/A136486/b136486.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = 4*Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).

%F a(n) = 4 * A136484(n).

%F a(n) = 2 * A136515(n).

%F a(n) = A136485(2*n+1).

%F Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).

%e a(1) = 4 because a circle centered at the origin and of radius 1+1/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).

%t Table[4*Sum[Floor[Sqrt[(n + 1/2)^2 - k^2]], {k,n}], {n, 0, 100}]

%o (Magma)

%o A136486:= func< n | n eq 0 select 0 else 4*(&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;

%o [A136486(n): n in [0..100]]; // _G. C. Greubel_, Jul 30 2023

%o (SageMath)

%o def A136486(n): return 4*sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))

%o [A136486(n) for n in range(101)] # _G. C. Greubel_, Jul 30 2023

%Y Cf. A003881, A136484, A136485, A136515.

%K easy,nonn

%O 0,2

%A Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008