login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136484
Number of unit square lattice cells inside quadrant of origin centered circle of diameter 2n+1.
4
0, 1, 3, 6, 13, 19, 28, 37, 48, 64, 77, 94, 110, 131, 152, 172, 199, 226, 253, 281, 308, 343, 377, 412, 447, 488, 528, 567, 612, 654, 703, 750, 796, 847, 902, 957, 1013, 1068, 1129, 1187, 1252, 1313, 1378, 1446, 1511, 1582, 1650, 1725, 1800, 1877, 1955, 2034
OFFSET
0,3
COMMENTS
Number of unit square lattice cells inside quadrant of origin centered circle of radius n+1/2.
LINKS
FORMULA
a(n) = Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
a(n) = (1/2) * A136515(n).
a(n) = (1/4) * A136486(n).
a(n) = A136483(2*n+1).
Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).
EXAMPLE
a(2) = 3 because a circle of radius 2+1/2 in the first quadrant encloses (2,1), (1,1), (1,2).
MATHEMATICA
Table[Sum[Floor[Sqrt[(n+1/2)^2 - k^2]], {k, n}], {n, 0, 100}]
PROG
(Magma)
A136484:= func< n | n eq 0 select 0 else (&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
[A136484(n): n in [0..100]]; // G. C. Greubel, Jul 29 2023
(SageMath)
def A136484(n): return sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
[A136484(n) for n in range(101)] # G. C. Greubel, Jul 29 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008
STATUS
approved