login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131239
Triangle, T(n,k) = 3*A007318(n,k) - 2*A046854(n,k), read by rows.
2
1, 1, 1, 1, 4, 1, 1, 5, 7, 1, 1, 8, 12, 10, 1, 1, 9, 24, 22, 13, 1, 1, 12, 33, 52, 35, 16, 1, 1, 13, 51, 85, 95, 51, 19, 1, 1, 16, 64, 148, 180, 156, 70, 22, 1, 1, 17, 88, 212, 348, 336, 238, 92, 25, 1, 1, 20, 105, 320, 560, 714, 574, 344, 117, 28, 1, 1, 21, 135, 425, 920, 1274, 1330, 918, 477, 145, 31, 1
OFFSET
0,5
COMMENTS
Row sums = A074878: (1, 2, 6, 14, 32, 70, 239, ...).
FORMULA
T(n,k) = 3*A007318(n,k) - 2*A046854(n,k) as infinite lower triangular matrices.
T(n,k) = 3*binomial(n,k) - 2*binomial(floor((n+k)/2), k). - G. C. Greubel, Jul 12 2019
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 4, 1;
1, 5, 7, 1;
1, 8, 12, 10, 1;
1, 9, 24, 22, 13, 1;
1, 12, 33, 52, 35, 16, 1;
...
MATHEMATICA
With[{B=Binomial}, Table[3*B[n, k] - 2*B[Floor[(n+k)/2], k], {n, 0, 12}, {k, 0, n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
PROG
(PARI) b=binomial; T(n, k) = 3*b(n, k) - 2*b((n+k)\2, k);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 12 2019
(Magma) B:=Binomial; [3*B(n, k) - 2*B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
(Sage) b=binomial; [[3*b(n, k) - 2*b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
(GAP) B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 3*B(n, k) - 2*B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 21 2007
EXTENSIONS
More terms added by G. C. Greubel, Jul 12 2019
STATUS
approved