Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 26 2022 00:35:47
%S 1,1,1,1,4,1,1,5,7,1,1,8,12,10,1,1,9,24,22,13,1,1,12,33,52,35,16,1,1,
%T 13,51,85,95,51,19,1,1,16,64,148,180,156,70,22,1,1,17,88,212,348,336,
%U 238,92,25,1,1,20,105,320,560,714,574,344,117,28,1,1,21,135,425,920,1274,1330,918,477,145,31,1
%N Triangle, T(n,k) = 3*A007318(n,k) - 2*A046854(n,k), read by rows.
%C Row sums = A074878: (1, 2, 6, 14, 32, 70, 239, ...).
%C A131238 = 2*A007318 - A046854.
%H G. C. Greubel, <a href="/A131239/b131239.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,k) = 3*A007318(n,k) - 2*A046854(n,k) as infinite lower triangular matrices.
%F T(n,k) = 3*binomial(n,k) - 2*binomial(floor((n+k)/2), k). - _G. C. Greubel_, Jul 12 2019
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 1, 4, 1;
%e 1, 5, 7, 1;
%e 1, 8, 12, 10, 1;
%e 1, 9, 24, 22, 13, 1;
%e 1, 12, 33, 52, 35, 16, 1;
%e ...
%t With[{B=Binomial}, Table[3*B[n,k] - 2*B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* _G. C. Greubel_, Jul 12 2019 *)
%o (PARI) b=binomial; T(n,k) = 3*b(n,k) - 2*b((n+k)\2, k);
%o for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jul 12 2019
%o (Magma) B:=Binomial; [3*B(n,k) - 2*B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 12 2019
%o (Sage) b=binomial; [[3*b(n,k) - 2*b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jul 12 2019
%o (GAP) B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 3*B(n,k) - 2*B(Int((n+k)/2), k) ))); # _G. C. Greubel_, Jul 12 2019
%Y Cf. A007318, A046854, A131238, A074878.
%K nonn,tabl
%O 0,5
%A _Gary W. Adamson_, Jun 21 2007
%E More terms added by _G. C. Greubel_, Jul 12 2019