login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170790
a(n) = n^9*(n^8 + 1)/2.
2
0, 1, 65792, 64579923, 8590065664, 381470703125, 8463334761216, 116315277170407, 1125899973951488, 8338591043543529, 50000000500000000, 252723515428620731, 1109305555950108672, 4325207964992918653
OFFSET
0,3
COMMENTS
Number of unoriented rows of length 17 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=65792, there are 2^17=131072 oriented arrangements of two colors. Of these, 2^9=512 are achiral. That leaves (131072-512)/2=65280 chiral pairs. Adding achiral and chiral, we get 65792. - Robert A. Russell, Nov 13 2018
LINKS
Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564, 31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
FORMULA
G.f.: (x + 65774*x^2 + 63395820*x^3 + 7437692410*x^4 + 236676566180*x^5 + 2858646249342*x^6 + 15527826341908*x^7 + 41568611082650*x^8 + 57445191259830*x^9 + 41568611082650*x^10 + 15527826341908*x^11 + 2858646249342*x^12 + 236676566180*x^13 + 7437692410*x^14 + 63395820*x^15 + 65774*x^16 + x^17)/(1-x)^18. - G. C. Greubel, Dec 06 2017
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010805(n) + A001017(n)) / 2 = (n^17 + n^9) / 2.
G.f.: (Sum_{j=1..17} S2(17,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..9} S2(9,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..16} A145882(17,k) * x^k / (1-x)^18.
E.g.f.: (Sum_{k=1..17} S2(17,k)*x^k + Sum_{k=1..9} S2(9,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>17, a(n) = Sum_{j=1..18} -binomial(j-19,j) * a(n-j). (End)
MATHEMATICA
Table[(n^9 (n^8+1))/2, {n, 0, 20}] (* Harvey P. Dale, Oct 03 2016 *)
PROG
(Magma) [n^9*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
(PARI) for(n=0, 30, print1(n^9*(n^8+1)/2, ", ")) \\ G. C. Greubel, Dec 06 2017
(Sage) [n^9*(n^8+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
(GAP) List([0..30], n -> n^9*(n^8+1)/2); # G. C. Greubel, Nov 15 2018
(Python) for n in range(0, 20): print(int(n**9*(n**8 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
CROSSREFS
Row 17 of A277504.
Cf. A010805 (oriented), A001017 (achiral).
Sequence in context: A170781 A063825 A253043 * A043678 A032781 A170799
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved