login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^9*(n^8 + 1)/2.
2

%I #26 Sep 08 2022 08:45:49

%S 0,1,65792,64579923,8590065664,381470703125,8463334761216,

%T 116315277170407,1125899973951488,8338591043543529,50000000500000000,

%U 252723515428620731,1109305555950108672,4325207964992918653

%N a(n) = n^9*(n^8 + 1)/2.

%C Number of unoriented rows of length 17 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=65792, there are 2^17=131072 oriented arrangements of two colors. Of these, 2^9=512 are achiral. That leaves (131072-512)/2=65280 chiral pairs. Adding achiral and chiral, we get 65792. - _Robert A. Russell_, Nov 13 2018

%H Vincenzo Librandi, <a href="/A170790/b170790.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (18,-153,816,-3060,8568,-18564, 31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).

%F G.f.: (x + 65774*x^2 + 63395820*x^3 + 7437692410*x^4 + 236676566180*x^5 + 2858646249342*x^6 + 15527826341908*x^7 + 41568611082650*x^8 + 57445191259830*x^9 + 41568611082650*x^10 + 15527826341908*x^11 + 2858646249342*x^12 + 236676566180*x^13 + 7437692410*x^14 + 63395820*x^15 + 65774*x^16 + x^17)/(1-x)^18. - _G. C. Greubel_, Dec 06 2017

%F From _Robert A. Russell_, Nov 13 2018: (Start)

%F a(n) = (A010805(n) + A001017(n)) / 2 = (n^17 + n^9) / 2.

%F G.f.: (Sum_{j=1..17} S2(17,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..9} S2(9,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.

%F G.f.: x*Sum_{k=0..16} A145882(17,k) * x^k / (1-x)^18.

%F E.g.f.: (Sum_{k=1..17} S2(17,k)*x^k + Sum_{k=1..9} S2(9,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.

%F For n>17, a(n) = Sum_{j=1..18} -binomial(j-19,j) * a(n-j). (End)

%t Table[(n^9 (n^8+1))/2,{n,0,20}] (* _Harvey P. Dale_, Oct 03 2016 *)

%o (Magma) [n^9*(n^8+1)/2: n in [0..20]]; // _Vincenzo Librandi_, Aug 26 2011

%o (PARI) for(n=0,30, print1(n^9*(n^8+1)/2, ", ")) \\ _G. C. Greubel_, Dec 06 2017

%o (Sage) [n^9*(n^8+1)/2 for n in range(30)] # _G. C. Greubel_, Nov 15 2018

%o (GAP) List([0..30], n -> n^9*(n^8+1)/2); # _G. C. Greubel_, Nov 15 2018

%o (Python) for n in range(0,20): print(int(n**9*(n**8 + 1)/2), end=', ') # _Stefano Spezia_, Nov 15 2018

%Y Row 17 of A277504.

%Y Cf. A010805 (oriented), A001017 (achiral).

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Dec 11 2009