login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170788
a(n) = n^9*(n^6 + 1)/2.
1
0, 1, 16640, 7184295, 537001984, 15259765625, 235097531136, 2373800931775, 17592253153280, 102945759757569, 500000500000000, 2088625263681671, 7703513367183360, 25592951809295065, 77784058109429504
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008, 11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
G.f.: (x + 16624*x^2 + 6918175*x^3 + 424049504*x^4 + 7520532701*x^5 + 51388594448*x^6 + 155693938947*x^7 + 223769083200*x^8 + 155693938947*x^9 + 51388594448*x^10 + 7520532701*x^11 + 424049504*x^12 + 6918175*x^13 + 16624*x^14 + x^15)/(1-x)^16. - G. C. Greubel, Dec 06 2017
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16). - Wesley Ivan Hurt, Jul 29 2022
MATHEMATICA
Table[n^9*(n^6+1)/2, {n, 0, 30}] (* G. C. Greubel, Dec 06 2017 *)
PROG
(Magma) [n^9*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
(PARI) for(n=0, 30, print1(n^9*(n^6+1)/2, ", ")) \\ G. C. Greubel, Dec 06 2017
CROSSREFS
Sequence in context: A210272 A183657 A247693 * A057329 A349773 A232450
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved