login
A168815
Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.
1
1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170761, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 4501515100636334942966837319021, A170761(19) = 4501515100636334942966837319882. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, -820).
FORMULA
G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^19 - 40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 - 40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1).
MATHEMATICA
CoefficientList[Series[(t^19 +2*t^18 +2*t^17 +2*t^16 +2*t^15 +2*t^14 +2*t^13 + 2*t^12 +2*t^11 +2*t^10 +2*t^9 +2*t^8 +2*t^7 +2*t^6 +2*t^5 +2*t^4 +2*t^3 + 2*t^2 +2*t +1)/(820*t^19 -40*t^18 -40*t^17 -40*t^16 -40*t^15 -40*t^14 - 40*t^13 -40*t^12 -40*t^11 -40*t^10 -40*t^9 -40*t^8 -40*t^7 -40*t^6 -40*t^5 - 40*t^4 -40*t^3 -40*t^2 -40*t +1), {t, 0, 50}], t] (* G. C. Greubel, Nov 21 2016 *)
coxG[{19, 820, -40}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 07 2023 *)
CROSSREFS
Cf. A170761 (G.f.: (1+x)/(1-41*x)).
Sequence in context: A167958 A168719 A168767 * A168863 A168911 A168959
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved