login
A168816
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.
1
1, 43, 1806, 75852, 3185784, 133802928, 5619722976, 236028364992, 9913191329664, 416354035845888, 17486869505527296, 734448519232146432, 30846837807750150144, 1295567187925506306048, 54413821892871264854016
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170762, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 7111409421007917621169651186809, A170762(19) = 7111409421007917621169651187712. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, -861).
FORMULA
G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^19 - 41*t^18 - 41*t^17 - 41*t^16 - 41*t^15 - 41*t^14 - 41*t^13 - 41*t^12 - 41*t^11 - 41*t^10 - 41*t^9 - 41*t^8 - 41*t^7 - 41*t^6 - 41*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1).
MATHEMATICA
CoefficientList[Series[(t^19 +2*t^18 +2*t^17 +2*t^16 +2*t^15 +2*t^14 +2*t^13 +2*t^12 +2*t^11 +2*t^10 +2*t^9 +2*t^8 +2*t^7 +2*t^6 +2*t^5 + 2*t^4 + 2*t^3 +2*t^2 +2*t +1)/(861*t^19 -41*t^18 -41*t^17 -41*t^16 -41*t^15 -41*t^14 - 41*t^13 -41*t^12 -41*t^11 -41*t^10 -41*t^9 -41*t^8 -41*t^7 -41*t^6 -41*t^5 - 41*t^4 -41*t^3 -41*t^2 -41*t +1), {t, 0, 50}], t] (* G. C. Greubel, Nov 21 2016 *)
coxG[{19, 861, -41}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 17 2024 *)
CROSSREFS
Cf. A170762 (G.f.: (1+x)/(1-42*x)).
Sequence in context: A167959 A168720 A168768 * A168864 A168912 A168960
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved