login
A168812
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.
1
1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547968, 353563778431304822784, 13435423580389583265792
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170758, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 1064558044543330135515017772315, A170758(19) = 1064558044543330135515017773056. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, -703).
FORMULA
G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^19 - 37*t^18 - 37*t^17 - 37*t^16 - 37*t^15 - 37*t^14 - 37*t^13 - 37*t^12 - 37*t^11 - 37*t^10 - 37*t^9 - 37*t^8 - 37*t^7 - 37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
MATHEMATICA
CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^19 - 37*t^18 - 37*t^17 - 37*t^16 - 37*t^15 - 37*t^14 - 37*t^13 - 37*t^12 - 37*t^11 - 37*t^10 - 37*t^9 - 37*t^8 - 37*t^7 - 37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 17 2016 *)
coxG[{19, 703, -37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 13 2018 *)
CROSSREFS
Cf. A170758 (G.f.: (1+x)/(1-38*x)).
Sequence in context: A167955 A168716 A168764 * A168860 A168908 A168956
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved