login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168251
a(n) = n^2 if n is odd, n^2*2^(n-2) if n is even.
1
0, 1, 4, 9, 64, 25, 576, 49, 4096, 81, 25600, 121, 147456, 169, 802816, 225, 4194304, 289, 21233664, 361, 104857600, 441, 507510784, 529, 2415919104, 625, 11341398016, 729, 52613349376, 841, 241591910400, 961, 1099511627776, 1089, 4964982194176, 1225
OFFSET
0,3
COMMENTS
This is the main diagonal of the following array defined by T(n,2k+1) = A168077(k) for odd column indices and T(n,2k) = A168077(2k)*2^n for even column indices:
0, 1, 1, 9, 4, 25, ... A168077
0, 1, 2, 9, 8, 25, ... A129194
0, 1, 4, 9, 16,25, ... A000290
0, 1, 8, 9, 32,25, ...
0, 1, 16,9, 64,25, ... A154615
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 15, 0, -87, 0, 245, 0, -348, 0, 240, 0, -64).
FORMULA
a(2n) = A128782(n). a(2n+1) = A016754(n).
a(n) = +15*a(n-2) -87*a(n-4) +245*a(n-6) -348*a(n-8) +240*a(n-10) - 64*a(n-12).
G.f.: x*(1 + 4*x - 6*x^2 + 4*x^3 - 23*x^4 - 36*x^5 + 212*x^6 + 44*x^7 - 336*x^8 - 16*x^9 - 64*x^10) / ( (1-x)^3*(2*x+1)^3*(1-2*x)^3*(1+x)^3 ). - R. J. Mathar, Sep 20 2011
a(n) = (n^2)*2^((n-2)*(1+(-1)^n)/2). - Luce ETIENNE, Feb 03 2015
MAPLE
A168251 := proc(n)
if type(n, 'even') then
n^2*2^n/4 ;
else
n^2 ;
end if;
end proc: # R. J. Mathar, Sep 20 2011
MATHEMATICA
Table[(n^2)*2^((n - 2)*(1 + (-1)^n)/2), {n, 0, 50}] (* G. C. Greubel, Jul 16 2016 *)
Table[If[OddQ[n], n^2, n^2 2^(n-2)], {n, 0, 50}] (* or *) LinearRecurrence[{0, 15, 0, -87, 0, 245, 0, -348, 0, 240, 0, -64}, {0, 1, 4, 9, 64, 25, 576, 49, 4096, 81, 25600, 121}, 41] (* Harvey P. Dale, May 14 2022 *)
PROG
(Magma) [(n^2)*2^((n-2)*(1+(-1)^n) div 2): n in [0..40]]; // Vincenzo Librandi, Jul 17 2016
CROSSREFS
Sequence in context: A073658 A059479 A094083 * A062758 A217854 A369866
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 21 2009
STATUS
approved