login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094083
Numerators of ratio of sides of n-th triple of rectangles of unit area sum around a triangle.
1
1, 1, 1, 4, 9, 64, 25, 256, 1225, 16384, 3969, 65536, 53361, 1048576, 184041, 4194304, 41409225, 1073741824, 147744025, 4294967296, 2133423721, 68719476736, 7775536041, 274877906944, 457028729521, 17592186044416, 1690195005625
OFFSET
1,4
COMMENTS
Page 13 of the link shows the type of configuration. When n is odd, the numerators 1,1,9,25,1225,3969,.. are A038534 and (A001790)^2, and the denominators 1,4,64,256,16384,65536,.. are A056982, A038533/2, and (A046161)^2. When n is even, the numerators 1,4,64,256,16384,65536,.. are A056982, A038533/2, and (A046161)^2, and the denominators 3,27,675,3675,297675,1440747,.. are 3*(A001803)^2. The limit of a(n+1)/a(n) as n(odd) tends to infinity = Pi^2/12, A072691. The limit of a(n+2)/a(n) as n tends to infinity = 1. a(n), for large odd n, tends to 2/(Pi*n). a(n), for large even n, tends to Pi/(6*n). The expansion of 2*x*EllipticK(x)/Pi gives the odd fractions. The expansion of 1/3*x*HypergeometricPFQ({1,1,1},{3/2,3/2},x) gives the even fractions.
FORMULA
a(n)=a(n-2)*((n-2)/(n-1))^2, a(1)=1, a(2)=1/3. a(n)=((n/2-1)!)^2/(Pi*((n/2-1/2)!)^2) for n odd. a(n)=(2^(1-n)*(n-2)!!^2)/((n-1)/2)!^2 for n odd. a(n)=Pi*((n/2-1)!)^2/(12*((n/2-1/2)!)^2) for n even. a(n)=(2^(n-2)*((n-2)/2)!^2)/(3*(n-1)!!^2) for n even.
EXAMPLE
a(5) = a(5-2)*((5-2)/(5-1))^2 = 1/4*(3/4)^2 = 9/64
MATHEMATICA
a[n_]:=If[OddQ[n], ((n/2-1)!)^2/(Pi*((n/2-1/2)!)^2), Pi*((n/2-1)!)^2/(12*((n/2-1/2)!)^2)] a[n_]:=If[OddQ[n], (2^(1-n)*(n-2)!!^2)/((n-1)/2)!^2, (2^(n-2)*((n-2)/2)!^2)/(3*(n-1)!!^2)] a[n_]:=((12+Pi^2+E^(I*n*Pi)*(Pi^2-12))*((n/2-1)!)^2)/(24*Pi*((n/2-1/2)!)^2) (CoefficientList[Series[(I*x*(6+Sqrt[3]*Pi)-2*x*Sqrt[3]*Log[x+Sqrt[x^2-1]])/(6*Sqrt[x^2-1]), {x, 0, 20}], x])^2
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Peter J. C. Moses, Apr 30 2004
STATUS
approved