login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168159
Distance of the least reversible n-digit prime from 10^(n-1)
2
1, 1, 1, 9, 7, 49, 33, 169, 7, 7, 207, 237, 91, 313, 261, 273, 79, 49, 2901, 51, 441, 193, 9, 531, 289, 1141, 67, 909, 331, 753, 2613, 657, 49, 4459, 603, 1531, 849, 2049, 259, 649, 2119, 1483, 63, 6747, 519, 3133, 937, 1159, 1999, 6921, 2949, 613, 4137, 1977, 31
OFFSET
1,4
COMMENTS
A (much) more compact form of A114018 (cf. formula). Since this sequence and A114018 refer to "reversible primes" (A007500), while A122490 seems to use "emirps" (A006567), a(n+1) differs from A122490(n) iff 10^n+1 is prime <=> a(n+1)=1 <=> A114018(n)=10^n+1.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..500
FORMULA
a(n)=A114018(n)-10^(n-1)
MATHEMATICA
Table[p = NextPrime[y = 10^(n - 1)]; While[! PrimeQ[FromDigits[Reverse[IntegerDigits[p]]]], p = NextPrime[p]]; p - y, {n, 55}] (* Jayanta Basu, Aug 09 2013 *)
PROG
(PARI) for(x=1, 1e99, until( isprime(x=nextprime(x+1)) & isprime(eval(concat(vecextract(Vec(Str(x)), "-1..1")))), ); print1(x-10^ (#Str(x)-1), ", "); x=10^#Str(x)-1)
(Python)
from sympy import isprime
def c(n): return isprime(n) and isprime(int(str(n)[::-1]))
def a(n): return next(p-10**(n-1) for p in range(10**(n-1), 10**n) if c(p))
print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Jun 27 2022
CROSSREFS
Sequence in context: A298780 A231605 A248307 * A038297 A144622 A069242
KEYWORD
base,nonn
AUTHOR
M. F. Hasler, Nov 21 2009
STATUS
approved